Adapter Name |
Price (USD) |
Adapter Image |
Function |
Wiring Diagrams/Pages |
44.99 |
Read/Write AB28FXXX/PA28FXXX/TB28FXXX |
null |
||
39.99 |
Read/Write PCF7922 PCF7941 PCF7945 |
|||
39.99 |
Read/Write M35080, M350803, M350806, |
|||
39.99 |
Read BMW EWS3 data without soldering | |||
39.99 |
Read BMW EWS4 data without soldering | |||
50.00 |
Read/Write |
|||
29.99 |
Read/Write TMS370 (PLCC28 package) chip |
|||
39.99 |
Read/Write AM29FXXXB series chip |
|||
29.99 |
Read/Write MC68HC05BX (PLCC52 package) chip including 0D60J, 1K20C, 3G96A (old Epia BCM) |
null |
||
29.99 |
Read/Write MC68HC05X32 ( QFP64 package) chip including OD69J, 1D69J, 1H52A, 0G47V (MC68HC05 series Mercedes EIS / EZS) |
null |
||
69.00 | Read BMW ECU N20 N55 B38 ISN Without Opening |
|||
269.00 | Read/Write Benz EIS/EZS W164 (ST12), W169(ST12), W203(HC08), W209/211(ZWG), W209/211(HC12), W211(ST12), W215/220/230, W639(HC08), SPRINTER(ST12), VITO W639(ST12) without soldering |
VVDI Prog can support to read MC9S12XE, and here we will share some info about MC9S12XE Chip.
1.Dflash and EEPROM
DFLASH and EEE share a data space, which can be understood as the data space in HDD, and then DFLASH and EEE are partitions on the hard disk. For example, DFLASH is the C drive and EEE is the D drive. We can give the entire hard drive to the C drive or all to the D drive, or the C drive and D drive can exist at the same time.
The size of all MC9S12XE series chips is 32KB, if all parts are given to DFLASH, DFLASH is 32KB (BMW CAS4+ is divided in this way, so CAS4+ does not have EEE). If the entire part is given to EEE, the size of EEE is 4KB (roughly understood as 8KB of data that EEE needs to occupy per 1KB, if EEE is 4KB, all 32K of space will be fully used, such as BMW E chassis FRM) Part to DFLASH and part to EEE (DFLASH+EEE*8<=32kb, such as Land Rover KVM) EEE allocates 1K to occupy 8K of space, because part of the space is used for caching. The size of DFLASH and EEE can read the size information (that is, the partition information) under the normal condition of the chip. When using xhorse products like VVDI Prog to read the 9S12XE chip, it will automatically read the data of the corresponding size according to the chip partition information.
The following situations require attention:
.1 The chip supports direct use without partitions (similar to HDD only C drive). In this case, the partition information read is FFFFF (the software will prompt the partition is abnormal), and the actual data is DFLASH 32K, EEE no data (some modules will be like this)
*If a module prompts a partition error when reading data, but the module itself can work normally, it is used directly without partitions.
.2 There is a certain probability that the chip will lose the partition information during normal operation. In this case, the partition information read is also FFFF (for example, BMW E chassis FRM).
*In this case, the module usually does not work normally
*When the partition information is lost, it is meaningless to read the EEE space. The data read will change every time, not related to the real data.
*In the case of loss of partition information, forcibly set the size of DFLASH to 32kb, the actual DFLASH and EEE data can be read out (note that the EEE data is not real data after being read, and it needs to be converted by algorithm to become real EEE data)
.3 The chip cannot directly read EEE data through the backup read option in the encrypted state, so if you need to read EEE data like Land Rover KVM, you must unlock the chip first, and then read the EEE data.
2.Partition size and mask.
MC9S12XE series chip modules are partitioned normally;The following is the mask comparison table of MC9S12XE series. When encountering the memory of unknown module, you can check the following mask to find its corresponding type in the programmer.
[MC9S12XEP100/XEP768] The left side of the following data is the mask and the right side is the chip ID
0M22E 0xCC80 1M22E 0xCC80 2M22E 0xCC82 0M48H 0xCC90 1M48H 0xCC91 2M48H 0xCC92 3M48H 0xCC93 5M48H 0xCC94 0N35H 0xCC95 1N35H 0xCC95
[MC9S12XEQ512/XET512] The left side of the following data is the mask and the right side is the chip ID 0M25J 0xC480 1M25J 0xC481 2M25J 0xC482 3M25J 0xC482 0M12S 0xC483 1M12S 0xC483 ;[MC9S12XET256] 0M53J 0xC080 1M53J 0xC081 2M53J 0xC081 0N36H 0xC082 1N36H 0xC082 ;[MC9S12XEG256] 0M53J 0xC080 1M53J 0xC081 2M53J 0xC081 0N36H 0xC082 1N36H 0xC082 [MC9S12XEA256] The left side of the following data is the mask and the right side is the chip ID 1M53J 0xC081 2M53J 0xC081 0N36H 0xC082 1N36H 0xC082